Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Signa Vitae ; 19(3):1-3, 2023.
Article in English | Academic Search Complete | ID: covidwho-2316214
2.
Vestnik Urologii/Urology Herald ; 10(4):141-154, 2022.
Article in Russian | EMBASE | ID: covidwho-2265312

ABSTRACT

Severe course of cOVID-19 among men compared to the female led to a detailed study of the hormonal status of men with cOVID-19. The earliest works about this focused on the incidence and severity of cOVID-19 depending on the intake of androgen deprivation therapy. At the same time, different classes of androgen deprivation therapy have different effects on androgen concentration that was not always considered in the analysis. In this regard, we conducted a review of the available literature data with a targeted study of works that included androgen deprivation therapy with a unidirectional effect on the concentration of male sex hormones. In addition, we conducted a review of studies focused on the relationship between cOVID-19 and androgens (testosterone and dihydrotestosterone).Copyright © 2022 Authors. All rights reserved.

3.
Vestnik Urologii/Urology Herald ; 10(4):141-154, 2022.
Article in Russian | EMBASE | ID: covidwho-2241969

ABSTRACT

Severe course of cOVID-19 among men compared to the female led to a detailed study of the hormonal status of men with cOVID-19. The earliest works about this focused on the incidence and severity of cOVID-19 depending on the intake of androgen deprivation therapy. At the same time, different classes of androgen deprivation therapy have different effects on androgen concentration that was not always considered in the analysis. In this regard, we conducted a review of the available literature data with a targeted study of works that included androgen deprivation therapy with a unidirectional effect on the concentration of male sex hormones. In addition, we conducted a review of studies focused on the relationship between cOVID-19 and androgens (testosterone and dihydrotestosterone).

4.
Front Immunol ; 13: 919958, 2022.
Article in English | MEDLINE | ID: covidwho-2039675

ABSTRACT

Background: Androgen sensitivity, which was established as the leading etiology of androgenetic alopecia (AGA) and benign prostatic hyperplasia (BPH), plays an important role in SARS-CoV-2 infection. Vaccination is essential for AGA and BPH patients in view of the high risk from SARS-CoV-2 infection. Purpose: We aimed to investigate the associated factors for SARS-CoV-2 vaccination and its side effects in populations with AGA and BPH. Method: We collected the data on SARS-CoV-2 vaccination and adverse reactions of male AGA and BPH patients visited the outpatient of Xiangya hospital by telephone and web-based questionnaires. Vaccination rate and adverse reactions were compared by different vaccine types and use of anti-androgen therapy. Result: A total of 457 AGA patients and 397 BPH patients were recruited in this study. Among which, 92.8% AGA patients and 61.0% BPH patients had at least the first dose of SARS-CoV-2 vaccination (p < 0.001). Having comorbidities and use of anti-androgen therapy increased the risk of un-vaccination among AGA by 2.875 and 3.729 times, respectively (p < 0.001). Around 31.1% AGA patients and 9.5% BPH patients presented adverse reactions, which were mostly mild. Anti-androgen therapy increased the inclination of injection site pain after vaccination (18.7% vs 11.9%; OR: 1.708, 95% CI: 1.088-2.683, p = 0.019). Conclusion: Co-existence of other systemic diseases and anti-androgen therapy were the limiting factors for SARS-CoV-2 unvaccination, especially in AGA patients. The importance of SARS-CoV-2 vaccines should be strengthened and popularized in androgen sensitive phenotypes.


Subject(s)
COVID-19 , Drug-Related Side Effects and Adverse Reactions , Prostatic Hyperplasia , Vaccines , Alopecia/complications , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Drug-Related Side Effects and Adverse Reactions/complications , Humans , Hyperplasia , Male , Phenotype , Prostate , Prostatic Hyperplasia/drug therapy , SARS-CoV-2 , Vaccination/adverse effects
5.
Diabetologie Metabolismus Endokrinologie Vyziva ; 24(2):74-77, 2021.
Article in Czech | EMBASE | ID: covidwho-1820638

ABSTRACT

Recent finding from molecular biologyl have shown that for the penetration of the SARS-CoV-2 coronavirus into host cells, a key role is played by protease serine 2, the activity of which is dependent on androgens. The important role of androgens is also evidenced by clinical observations that men in some age categories are infected by this novel coronavirus up to two times more frequently than women. In addition, men with androgenic alopecia tend to have a more serious clinical course, while men with androgen deprivation as a result of prostate cancer treatments tend to have milder courses. This is in line with the fact that preadolescent children are only rarely sickened with a serious form of SARS-CoV-2 infections. Even though these observations may be explained by other factors, many authors have hypothesized that lowered androgen levels and blocking their activity using anti-androgen medication may moderate the course of the viral infection in intermediately to critically affected cases. Clearly, it would be important for androgen deprivation to block not just gonadal androgens, but also adrenal androgens. The secretion of adrenal androgens can be reduced with corticoids, so recommended treatments using dexamethasone to patients with more serious COVID-19 disease do not just inhibit the cytokine storm, but also hinder the secretion of adrenal androgens.

6.
Eur Urol ; 81(3): 285-293, 2022 03.
Article in English | MEDLINE | ID: covidwho-1568696

ABSTRACT

BACKGROUND: Men are more severely affected by COVID-19. Testosterone may influence SARS-CoV-2 infection and the immune response. OBJECTIVE: To clinically, epidemiologically, and experimentally evaluate the effect of antiandrogens on SARS-CoV-2 infection. DESIGNS, SETTINGS, AND PARTICIPANTS: A randomized phase 2 clinical trial (COVIDENZA) enrolled 42 hospitalized COVID-19 patients before safety evaluation. We also conducted a population-based retrospective study of 7894 SARS-CoV-2-positive prostate cancer patients and an experimental study using an air-liquid interface three-dimensional culture model of primary lung cells. INTERVENTION: In COVIDENZA, patients were randomized 2:1 to 5 d of enzalutamide or standard of care. OUTCOME MEASUREMENTS: The primary outcomes in COVIDENZA were the time to mechanical ventilation or discharge from hospital. The population-based study investigated risk of hospitalization, intensive care, and death from COVID-19 after androgen inhibition. RESULTS AND LIMITATIONS: Enzalutamide-treated patients required longer hospitalization (hazard ratio [HR] for discharge from hospital 0.43, 95% confidence interval [CI] 0.20-0.93) and the trial was terminated early. In the epidemiological study, no preventive effects were observed. The frail population of patients treated with androgen deprivation therapy (ADT) in combination with abiraterone acetate or enzalutamide had a higher risk of dying from COVID-19 (HR 2.51, 95% CI 1.52-4.16). In vitro data showed no effect of enzalutamide on virus replication. The epidemiological study has limitations that include residual confounders. CONCLUSIONS: The results do not support a therapeutic effect of enzalutamide or preventive effects of bicalutamide or ADT in COVID-19. Thus, these antiandrogens should not be used for hospitalized COVID-19 patients or as prevention for COVID-19. Further research on these therapeutics in this setting are not warranted. PATIENT SUMMARY: We studied whether inhibition of testosterone could diminish COVID-19 symptoms. We found no evidence of an effect in a clinical study or in epidemiological or experimental investigations. We conclude that androgen inhibition should not be used for prevention or treatment of COVID-19.


Subject(s)
Androgen Antagonists/therapeutic use , Anilides/therapeutic use , Benzamides/therapeutic use , COVID-19 Drug Treatment , Nitriles/therapeutic use , Phenylthiohydantoin/therapeutic use , SARS-CoV-2/isolation & purification , Tosyl Compounds/therapeutic use , Aged , Aged, 80 and over , Androgens/therapeutic use , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , Female , Hospitalization , Humans , Male , Middle Aged , Retrospective Studies , Sweden/epidemiology , Testosterone , Treatment Outcome
7.
Front Med (Lausanne) ; 8: 668698, 2021.
Article in English | MEDLINE | ID: covidwho-1344273

ABSTRACT

Antiandrogens have demonstrated a protective effect for COVOD-19 patients in observational and interventional studies. The goal of this study was to determine if proxalutamide, an androgen receptor antagonist, could be an effective treatment for men with COVID-19 in an outpatient setting. A randomized, double-blinded, placebo-controlled clinical trial was conducted at two outpatient centers (Brasilia, Brazil). Patients were recruited from October 21 to December 24, 2020 (clinicaltrials.gov number, NCT04446429). Male patients with confirmed COVID-19 but not requiring hospitalization (COVID-19 8-point ordinal scale <3) were administered proxalutamide 200 mg/day or placebo for up to 7 days. The primary endpoint was hospitalization rate at 30 days post-randomization. A total of 268 men were randomized in a 1:1 ratio. 134 patients receiving proxalutamide and 134 receiving placebo were included in the intention-to-treat analysis. The 30-day hospitalization rate was 2.2% in men taking proxalutamide compared to 26% in placebo, P < 0.001. The 30-day hospitalization risk ratio was 0.09; 95% confidence interval (CI) 0.03-0.27. Patients in the proxalutamide arm more frequently reported gastrointestinal adverse events, however, no patient discontinued treatment. In placebo group, 6 patients were lost during follow-up, and 2 patients died from acute respiratory distress syndrome. Here we demonstrate the hospitalization rate in proxalutamide treated men was reduced by 91% compared to usual care.

8.
New Microbes New Infect ; 43: 100915, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1300956

ABSTRACT

In a prospective observational study (pre-AndroCoV Trial), the use of nitazoxanide, ivermectin and hydroxychloroquine demonstrated unexpected improvements in COVID-19 outcomes when compared to untreated patients. The apparent yet likely positive results raised ethical concerns on the employment of further full placebo controlled studies in early-stage COVID-19. The present analysis aimed to elucidate, through a comparative analysis with two control groups, whether full placebo-control randomized clinical trials (RCTs) on early-stage COVID-19 are still ethically acceptable. The Active group (AG) consisted of patients enrolled in the Pre-AndroCoV-Trial (n = 585). Control Group 1 (CG1) consisted of a retrospectively obtained group of untreated patients of the same population (n = 137), and Control Group 2 (CG2) resulted from a precise prediction of clinical outcomes based on a thorough and structured review of indexed articles and official statements. Patients were matched for sex, age, comorbidities and disease severity at baseline. Compared to CG1 and CG2, AG showed reduction of 31.5-36.5% in viral shedding (p < 0.0001), 70-85% in disease duration (p < 0.0001), and 100% in respiratory complications, hospitalization, mechanical ventilation, deaths and post-COVID manifestations (p < 0.0001 for all). For every 1000 confirmed cases for COVID-19, at least 70 hospitalizations, 50 mechanical ventilations and five deaths were prevented. Benefits from the combination of early COVID-19 detection and early pharmacological approaches were consistent and overwhelming when compared to untreated groups, which, together with the well-established safety profile of the drug combinations tested in the Pre-AndroCoV Trial, precluded our study from continuing employing full placebo in early COVID-19.

9.
Trials ; 22(1): 431, 2021 Jul 05.
Article in English | MEDLINE | ID: covidwho-1298059

ABSTRACT

BACKGROUND: Therapeutic targeting of host-cell factors required for SARS-CoV-2 entry is an alternative strategy to ameliorate COVID-19 severity. SARS-CoV-2 entry into lung epithelium requires the TMPRSS2 cell surface protease. Pre-clinical and correlative data in humans suggest that anti-androgenic therapies can reduce the expression of TMPRSS2 on lung epithelium. Accordingly, we hypothesize that therapeutic targeting of androgen receptor signaling via degarelix, a luteinizing hormone-releasing hormone (LHRH) antagonist, will suppress COVID-19 infection and ameliorate symptom severity. METHODS: This is a randomized phase 2, placebo-controlled, double-blind clinical trial in 198 patients to compare efficacy of degarelix plus best supportive care versus placebo plus best supportive care on improving the clinical outcomes of male Veterans who have been hospitalized due to COVID-19. Enrolled patients must have documented infection with SARS-CoV-2 based on a positive reverse transcriptase polymerase chain reaction result performed on a nasopharyngeal swab and have a severity of illness of level 3-5 (hospitalized but not requiring invasive mechanical ventilation). Patients stratified by age, history of hypertension, and severity are centrally randomized 2:1 (degarelix: placebo). The composite primary endpoint is mortality, ongoing need for hospitalization, or requirement for mechanical ventilation at 15 after randomization. Important secondary endpoints include time to clinical improvement, inpatient mortality, length of hospitalization, duration of mechanical ventilation, time to achieve a normal temperature, and the maximum severity of COVID-19 illness. Exploratory analyses aim to assess the association of cytokines, viral load, and various comorbidities with outcome. In addition, TMPRSS2 expression in target tissue and development of anti-viral antibodies will also be investigated. DISCUSSION: In this trial, we repurpose the FDA approved LHRH antagonist degarelix, commonly used for prostate cancer, to suppress TMPRSS2, a host cell surface protease required for SARS-CoV-2 cell entry. The objective is to determine if temporary androgen suppression with a single dose of degarelix improves the clinical outcomes of patients hospitalized due to COVID-19. TRIAL REGISTRATION: ClinicalTrials.gov NCT04397718. Registered on May 21, 2020.


Subject(s)
COVID-19 , Veterans , Clinical Trials, Phase II as Topic , Hospitalization , Humans , Male , Multicenter Studies as Topic , Oligopeptides , Randomized Controlled Trials as Topic , SARS-CoV-2 , Treatment Outcome
10.
Trials ; 22(1): 209, 2021 Mar 16.
Article in English | MEDLINE | ID: covidwho-1136242

ABSTRACT

OBJECTIVES: The main goal of the COVIDENZA trial is to evaluate if inhibition of testosterone signalling by enzalutamide can improve the outcome of patients hospitalised for COVID-19. The hypothesis is based on the observation that the majority of patients in need of intensive care are male, and the connection between androgen receptor signalling and expression of TMPRSS2, an enzyme important for SARS-CoV-2 host cell internalization. TRIAL DESIGN: Hospitalised COVID-19 patients will be randomised (2:1) to enzalutamide plus standard of care vs. standard of care designed to identify superiority. PARTICIPANTS: Included participants, men or women above 50 years of age, must be hospitalised for PCR confirmed COVID-19 symptoms and not in need of immediate mechanical ventilation. Major exclusion criteria are breast-feeding or pregnant women, hormonal treatment for prostate or breast cancer, treatment with immunosuppressive drugs, current symptomatic unstable cardiovascular disease (see Additional file 1 for further details). The trial is registered at Umeå University Hospital, Region Västerbotten, Sweden and 8 hospitals are approved for inclusion in Sweden. INTERVENTION AND COMPARATOR: Patients randomised to the treatment arm will be treated orally with 160 mg (4x40 mg) enzalutamide (Xtandi®) daily, for five consecutive days. The study is not placebo controlled. The comparator is standard of care treatment for patients hospitalised with COVID-19. MAIN OUTCOMES: The primary endpoints of the study are (time to) need of mechanical ventilation or discharge from hospital as assessed by a clinical 7-point ordinal scale (up to 30 days after inclusion). RANDOMISATION: Randomisation was stratified by center and sex. Each strata was randomized separately with block size six with a 2:1 allocation ratio (enzalutamide + "standard of care": "standard of care"). The randomisation list, with consecutive subject numbers, was generated by an independent statistician using the PROC PLAN procedure of SAS version 9.4 software (SAS Institute, Inc, Cary, North Carolina) BLINDING (MASKING): This is an open-label trial. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): The trial is designed to have three phases. The first, an exploration phase of 45 participants (30 treatment and 15 control) will focus on safety and includes a more extensive laboratory assessment as well as more frequent safety evaluation. The second prolongation phase, includes the first 100 participants followed by an interim analysis to define the power of the study. The third phase is the continuation of the study up to maximum 600 participants included in total. TRIAL STATUS: The current protocol version is COVIDENZA v2.0 as of September 10, 2020. Recruitment started July 29, 2020 and is presently in safety pause after the first exploration phase. Recruitment is anticipated to be complete by 31 December 2021. TRIAL REGISTRATION: Eudract number 2020-002027-10 ClinicalTrials.gov Identifier: NCT04475601 , registered June 8, 2020 FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Phenylthiohydantoin/analogs & derivatives , SARS-CoV-2/drug effects , Antiviral Agents/adverse effects , Benzamides , COVID-19/diagnosis , COVID-19/virology , Clinical Trials, Phase II as Topic , Female , Host-Pathogen Interactions , Humans , Male , Middle Aged , Multicenter Studies as Topic , Nitriles , Phenylthiohydantoin/adverse effects , Phenylthiohydantoin/therapeutic use , Prospective Studies , Randomized Controlled Trials as Topic , SARS-CoV-2/pathogenicity , Sweden , Time Factors , Treatment Outcome , Virus Internalization/drug effects
11.
Cureus ; 13(2): e13492, 2021 Feb 22.
Article in English | MEDLINE | ID: covidwho-1106384

ABSTRACT

Background The entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into type II pneumocytes is dependent on a modification of viral spike proteins by transmembrane protease serine 2 (TMPRSS2) expressed on the surface of human cells. TMPRSS2 is regulated by the androgen receptor, hence, SARS-CoV-2 infectivity is indirectly dependent on androgenic status and phenotype. Previously, we have reported that men affected by androgenetic alopecia (AGA) are overrepresented in severe coronavirus disease 2019 (COVID-19). Additionally, we have reported that men taking antiandrogenic drugs, e.g., 5-alpha-reductase inhibitors (5ARis), are less likely to have severe COVID-19. Here we aimed to test whether the androgen receptor antagonist, Proxalutamide, would be a beneficial treatment for subjects with SARS-CoV-2 infection. Methods Male and female subjects were recruited to a double-blinded, randomized, prospective, investigational study of Proxalutamide for the treatment of COVID-19. Mild to moderate, non-hospitalized subjects, who were confirmed positive for SARS-CoV-2, were treated with either Proxalutamide 200 mg/day or placebo. Endpoints for the study were remission time (days) and the percentage of subjects confirmed negative for SARS-CoV-2 on Day 7 after treatment. A negative SARS-CoV-2 test was defined by concentration-time (Ct)>40 determined by real-time reverse transcription-polymerase chain reaction (rtPCR). Results Two-hundred thirty-six (2360 subjects were included in the study (108 female, 128 male); 171 were randomized to the Proxalutamide arm and 65 were in the placebo group. On Day 7, SARS-CoV-2 became non-detectable with rtPCR (cT>40) in 82% of the subjects in the Proxalutamide group versus 31% in the placebo group (p < 0.001). The average clinical remission time for patients treated with Proxalutamide was 4.2 ±5.4 days versus 21.8 ±13.0 days in the placebo arm (p < 0.001). Conclusion Proxalutamide significantly accelerated viral clearance on Day 7 in mild to moderate COVID-19 patients versus placebo. Further, the time to clinical remission was significantly reduced in patients treated with Proxalutamide versus placebo.

SELECTION OF CITATIONS
SEARCH DETAIL